Difference between closure and complement

For the given subset $A \in \Omega$

Let $A = <0,1)$, and $\Omega = (-\infty, \infty)$

Complement:

Complement

$A’ = \Omega - A$

$A’ = (-\infty, 0) \cup <1, \infty)$

Closure

Closure

$\overline{A} = <0,1>$


latex beamer